Integrated Tools and Techniques Applied to the
TES Ground Data System:

Brian A. Morrison
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
818-354-2458
Brian . Morrison @jpl.nasa.gov

Abstract—The Tropospheric Emission Spectrometer (TES)
is a Fourier Transform Spectrometer (FTS) scheduled for
launch in June of 2003. Over its six-year mission, it is
expected to provide three-dimensional maps of ozone and its
precursors as part of NASA’s Earth Observing System
(EOS). Developing production-quality software to process
large volumes of scientific data and accommodate changing
requirements throughout the mission along with the need to
ensure that scientific goals and objectives are met presents
many challenges. The author of the paper will discuss the
selection of CASE tools, a decision making process,
requirements tracking and a review mechanism that leads to
a highly integrated approach to software development that
must deal with the constant pressure to change software
requirements and design that is associated with research and
development. This integrated approach of tools and
techniques should provide a process and mechanism to assist
in continually verifying that mission objectives are correctly
expressed in software requirements and fully realized in
design in order to achieve overall mission success of the
ground data processing system.

TABLE OF CONTENTS

INTRODUCTION

GROUND DATA SYSTEM

CHANGE 1S THE CHALLENGE

TEAMING TO UNDERSTAND REQUIREMENTS
INTEGRATED DEVELOPMENT APPROACH
HoR1ZONTAL CASE ToOOLS

CONNECTION - HUMAN PROCESSES AND TQOLS

AR o e

1. INTRODUCTION

TES Mission

TES is one of a series of polar-orbiting satellites in NASA’s
Earth Observing System (EOS), which is an effort to obtain
long-term global observations of the land surfaces, the
biosphere, solid earth, the atmosphere and oceans. EOS
itself is the principal element of an even larger venture
called Earth Science Enterprise (ESE). This mission is a

! 0-7803-6599-2/01/$10.00 © 2001 [EEE

concerted effort on the part of NASA and the international
community to understand our planet’s climate system and its
variations.

TES has two basic science operating modes: Global Surveys
(GS) and Special Research Observations. For Global
Surveys, continuous sequences of a space view and a
blackbody view calibration pair, two nadir views and 3 limb
views are acquired. Calibrations and nadir views require 4
seconds each, limb views 16 seconds. Adding in the times
needed for accelerating and decelerating the moving element
of the FTS, each sequence requires 81.2 seconds to
accomplish. 73 sequences are acquired on each orbit,
triggered by passage of the orbital southern apex, and an
entire survey requires 58 orbits (just under 4 days). Each
survey is preceded and followed by 2 orbits of pure space
and blackbody views for calibration purposes. The CHEM
orbit has a 16-day repeat period, so Global Surveys are
made on a “4-day-on, 4-day-off” cycle.

Special Research Observations fall into two general
categories. The first category is to collect targeted nadir
observations of specific locations such as volcanoes or
biomass burning. Such observations are made for as long as
the target is within +45E of the nadir direction (up to 210
seconds). The second category is to make transect
observations: up to about 800 km long down-looking and
essentially indefinitely at the limb. In every case, such
observations are accompanied by appropriate calibration
sequences. In general, Special Research Observations are
made during the 4-day gaps in the Global Surveys [1].

2. GROUND DATA SYSTEM

Of the two modes, GS is the workhorse mode for TES
whereby the majority of data will be collected and processed
in order to produce standard data products that will be
distributed to the scientific community on a regular basis.
This collection and processing of both GS and Special
Observations of TES instrument data is expected to last
approximately five years.

The very nature of TES with its voluminous data

computational requirements along with newly developed
algorithms present several challenges to the developers of
the science software needed to process the data.

Processing Levels

The TES Ground Data Processing System is comprised of
four major subsystems, Level-1A, Level-1B, Level-2 and
Level-3. Each subsystem is a fairly large transformational
step needed to further process TES data in order to produce
the final data products.

Level-1A

Level-1A converts the serial bit stream from the spacecraft
back to interferograms (i.e., essentially the original
instrument output). The signal amplitudes at this stage are in
Data Numbers (DN), which can range between 1(215-1), on
an (implicit) grid of Optical Path Difference (OPD)
determined by the frequency of the Nd:YAG on-board
control laser and the number of laser fringes between
samples (specified in Table XIX of the SOAGR). Level- A
is largely non-algorithmic with the exception of the
computations of pointing angles and target locations based
on shaft encoder outputs from the Pointing Control System
(PCS), spacecraft attitude (from the on-board gyro) and
spacecraft position (from the ephemeris). Short-scan (4 sec)
interferograms contain between about 15,000 and 20,000
points. Long-scan (16 sec) interferograms are 4 times larger.
All Level-1A processing occurs at the SIPS.

Level-1B

Level-1B converts the interferograms, through a process of
phase correction and calibration, to radiometrically-
calibrated spectra. The output amplitudes at this stage are in
watts/cm*/sr/cm™ on a grid of absolute vacuum cm™. While
quite computationally-intensive, Level-1B is much less so
than Level-2 (estimated to be about 10% of the Level-2
loading). All Level-1B processing occurs at the SIPS.

Level-2

This level converts the spectra to vertical volume mixing
ratios of selected molecules on a pre-determined pressure
(not altitude) grid. This process, called Earth Limb and
Nadir Operational Retrieval (ELANOR), is the most
computationally-intensive part of the entire data processing
and therefore receives the most attention during
development in order to find ways of reducing the
processing burden. The volumes of the retrieved profiles are
very small. However, a final stage in the process is to
compute a complete spectrum based on the retrieved profiles
and subtract it from the observed Level-1B spectrum. This
file of residuals is the same size as Levels-1A and 1B
outputs. Standard Product Level-2 processing occurs at the
Science Investigator-Lead Processing System (SIPS);
Special Research Products Level-2 processing occurs at the

Science Computing Facility (SCF) located at the Jet
Propulsion Laboratory.

Level-3

This level generates global maps of species on selected
pressure or isoentropic surfaces to facilitate browsing and
comparison to models and other observations (spaceborne or
in situ). This process is usually undertaken only for Global
Surveys and occurs at the SIPS, although we shall probably
wish to use a simplified version at the SCF for transects.

3. CHANGE IS THE CHALLENGE

Several challenges within the software development effort
must be dealt with to ensure that overall success is achieved.
The challenges that the TES team face are: a large and
complex software system, a system development that occurs
over several years, continually changing requirements, a
need for up to date documentation, constraints on resources
(including personnel and budget) and most importantly the
need to ensure that the software produced meets the
scientific goals and objectives set forth by the TES science
team.

The Problem

So the problem that the TES software development team
faces is how to capture and implement requirements of a
large and complex science software system developed over
several years that must also deal with constant algorithmic
change (requirements modifications) through development
and after deployment while still trying to achieve the goals
and objectives set forth by the science team.

So the problem becomes more than the careful selection of
vertical tools such as compilers, editors, debuggers, etc.
While these items remain an important element in any
software development effort it is not enough to guarantee
that the steps within the software development lifecycle are
consistent with the overall goals and objectives. It has
become apparent to the author that there is a critical need for
horizontal tools (requirements tracking, unified design
modeling and uniform document generation) along with
formal peer reviews and a high level of interactive
collaboration between scientist and software developer to
assist in attaining mission success. Unlike the development
and deployment of communication satellites that typically
have stable functional requirements that when delivered
either work or don’t work (with the exception of occasional
software patches that are uplinked to fix bugs or provide
some limited additional functionality), the TES instrument is
predominately research and development in nature.

A Need for Process and CASE Tools

It is the authors opinion that in order for the TES software
development team to be successful in a changing
environment there must be a well-defined process for
managing change coupled with the appropriate choice of
horizontal CASE tools to aide in the managing, tracking and
deployment of science software.

5. INTEGRATED DEVELOPMENT APPROACH
On the TES project, the software team has selected an

integrated approach that combines both a human processes
for establishing, managing and implementing requirements

and specific horizontal CASE tools for managing
requirements, centralizing a design, generating
documentation, tracking action items and controlling
changes. With this approach, scientist and software

developers work closely together to address issues and
manage change.

As discussed here, an integrated approach means addressing
the need to have both human processes and processes that
can be furthered by the used of CASE tools and most
importantly a useful connection between both types of
processes. Figure 1 shows how the two processes are related
and form an integrated approach to managing the lifecycle.
It may be tempting in software development in the face of
great change to ignore tracking and managing of that
change, after all if it is always changing why even bother
recording it? Often this approach is adopted for rapid
development or proof-of-concept development efforts,
which may be appropriate. But for large production quality
projects that are not prototypes this approach beckons
failure. It is the author’s opinion that it is the very nature of
change that can lead development astray by letting the
seemingly small incremental modifications (also known as
requirements creep) to slowly move the entire effort off-
track. Therefore, we must manage the change. Next we
discuss the human processes in managing change.

Programimatic

& Informal

‘Preliminary | Critical Launch
Readiniess

Softiare ; i
Requiremetits Design esign

Reviews Review Review Review Review

Requiréments - Requitéments . o
1 Definition: - ' Analysis ’D”‘Sn »Tﬂﬂ Deliver

Mamtain

‘
Reguirements Interface Design
Dorumentation Specifications’ Docurments

Figure 1 - Integrated CASE Tools
4. TEAMING TO UNDERSTAND REQUIREMENTS

The science team and the software development team meet
formally once a week, and informally daily. It is through
these frequent sessions that the ambiguity of requirements
are reduced or completely eliminated altogether. So the
process is not one of gained requirement content simply by
the transcription of information gathered and written into
itemized requirements. Rather, it is the process of frequent
interaction using diagrams, drawings and words to express a
science requirement in ways comfortable to both parties that
help better define requirements [4].

Software Peer Reviews

On the TES project we use the peer review process as one
technique to better understand science requirements. This
technique is familiar ground to the scientist and represents a
fairly common mechanism to attempt to better understand
science goals and objectives by emphasizing what is known
and to expose areas of weak understanding. The key to
developing requirements during the peer review process is to
understand that the science requirements themselves are
evolving in parallel to the scientific research. Through peer
reviews we embed the development of requirements with the
process of advancing the research by working collectively
(scientist and software developer) to better understand the
goals and objectives of the science.

Example of Change by Review

For example, on TES there is a high level requirement “to
have a capability to visualize science software results.” This
requirement originates at a high level requirement levied by
the Principal Investigator (PI), which traces down to a
system level requirement, and then ultimately down to a
visualization subsystem requirement. Through the process of
an internal review of the visualization software
requirements, the board discovered a derived requirement
that stipulated that the visualization software needs to be
“highly reliable” and is “not mission critical”. The science
members on the review board, however, indicated that this
may not be true and determined it needed further attention.
This finding generated a review action item. The science
team determined that the science results gathered from the
use of visualization tools may be used to make major
changes in algorithms or instrument operations and was
therefore a critical element in overall mission success. The
item was worked offline and the requirement was
subsequently changed to indicate that the software is
“mission critical”. The change to mission critical status
indicates an important step in the requirements development
process. A derived requirement was reviewed by the
customer (science team), and corrective changes were made
early that greatly affect mission success.

So the goal then is not only to capture requirements more
accurately, but to capture requirements as they are
presented, clarified, reworked and understood by the
scientist and engineer in a social context. It is this highly
interactive exchange of refining and understanding the
meaning behind the requirements that the author believe
gives the greatest value to evolved requirements on the TES
project.

Change Control Board (CCB)

As is normal for a formal project, all changes to algorithms,
codes, documentation and processes are subject to change
control. Once software requirements have been baselined
any change must go through the Change Control Board
(CCB). The CCB is chaired by the PI and meets as
frequently as necessary to ensure expeditious action on
change requests.

The usage of the CCB comprised of both scientist and
software developers provides an excellent means for
controlling change. Changes to requirements such as
priorities, testing methods, resource allocation and decisions
of deletion and addition of requirements are made regularly
with a conscientious view as to how the changes will impact
overall science mission objectives. In this manner,
requirements and their associated attributes can be changed
without jeopardizing the mission by losing sight of the
bigger picture.

6. HORIZONTAL CASE TOOLS

The second element of an integrated approach to managing
and controlling change is accomplished through the use of
CASE tools, specifically horizontal CASE tools. Horizontal
CASE tools are tools that span across the software
development lifecycle. Vertical CASE tools are targeted
usually within a specific stage of development. Examples of
vertical tools include compiler, editors, run-time checkers
etc. Therefore, for purposes of managing and controlling
change across the development lifecycle, mostly horizontal
tools will be discussed.

Using Rational RequisitePro To Manage Requirements

On the TES project we, currently use RequisitePro, a
software requirements management and tracking tool
provided by Rational Software, Inc. The use of such a tool
may seem obvious. There are many stories of failed software
development efforts that can be traced back to a lack of fully
understanding and capturing initial requirements coupled
with problems associated with not managing changing
requirements throughout the software development lifecycle

[2].

We use RequisitePro to capture requirements, add needed

project specific attributes to requirements, trace
requirements to other higher level requirements or
algorithms, build test plans and map requirements to
programmatic deliveries. These are all part of the many
steps necessary to developing successful software. We agree
that such a tool is an excellent way of managing and tracking
change of software requirements, However, for our team the
true value extends beyond the benefits of merely
bookkeeping requirements. Figure 2 shows how
RequisitePro has been tailored to incorporate requirement
attributes specific to our project.

Walson Beta-1

Watson Beta-t 7
Test

Framework FAL01-02 N 678
Team

Framework FW01-02 678
Team

Framework FW-00-01 680
Toam

Watson Beta-1 FW-00-01 Framework : Demonstrati¢ 681
Framework FA-00-01 682
Team

Framework FW-00-02 893
Team

Watson Beta-$ FN-00-01

Figure 2 - Customized Requirement Attributes using ReqPro

We are hopeful the tool will become a method for furthering
the communication between scientist and requirements
authors. This is accomplished by using the tool as a way to
continually refine science requirements (a process that is
ongoing irrespective of software development). In addition,
we have extended the attributes within the tool to
incorporate project specific details: subsystem names,
delivery phases, test methods, names of developers, science
priorities, and so on. In this way, the scientists see the
requirements as more than just a lengthy list of itemized
unrelated facts. The tool also provides an easy-to-use
interface (RequisitePro is accessed through Microsoft Word)
and, finally, the tool provides easy access to the
requirements, again furthering the idea that the scientist may
directly add new requirements, annotate existing ones or
simply view them [3]. Figure 3 shows the flow of
requirements change using RequisitePro.

The tool therefore is not viewed as a peripheral activity;
instead it has become an integrated part to the already
existing collection of tools used in the scientific research
process. This collaborative use of the tool has contributed to
a better understanding of the science requirements by
viewing science requirement development as a highly
integrated piece in the effort to establish specific research

goals.

Lasd System
\ Enginoers Engirest
. ¢ No
[Systes o] Mg Systetn wid] L Ravow s
Systam Requramats. Subsysten. Subsysten. ¥ Delivery Req's
‘Subs B X' Eterin.
- ;I::‘ i mqn::mu mq:::m { vk :;‘l:x v
Teariny Jign chwdul g amat!
RequistePro4.5 Deliviies Deliverits RecDeks
T Yo
i '} Dickan syita Pictonn. Syruen. : —y
Test] linl tasting & syvian bl il tested ey ‘;;;m
Exginser [77F build degrtion tarkn code Requinaens or
- H onwitertin o : froem aach Srch e
Alivey (1 weaks dativmy Subsystem Sabryiem frtarin delivay
Puckige itarien |- B
aliary for ‘ cM
[trepert to : Eginser
tw SIPS g = '

Figure 3- Flow of requirements change.

Using Rational Rose To Centralize a Design

Rational Rose is a visual modeling tool provided by
Rational Software Inc. that is based on the Unified Modeling
Language™ (UML). The UML is currently the standard
notation for object-oriented software architecture. Rational
Rose is used by our team to visualize, understand, and refine
our requirements (tracked and managed by RequisitePro)
and architecture before committing them to code. This
allows the team to avoid wasted effort in the development
cycle. By using a single modeling tool throughout the
development life cycle it should help us ensure that we are
building the right system. The architecture model can be
traced back to the system requirements, although currently
this step is not handled in an automated fashion.

The entire design resides in one model that is accessible by
all team members. Changes and modifications to the design
model are controlled by Harvest/CCC, the configuration
management tool used on TES. Model files are checked out,
modified and checked back into Harvest in the same manner
as code, design file memorandums and other supporting
documentation. Using Rational Rose we are able to
centralize the entire design for the SDPS and have change
control with versioning.

Since the Rational Rose design is expressed using a visual
modeling tool, we have been able to visually communicate
the design to the TES science team without them having to
understand many of the underlying details. The science team
has made a concerted effort to understand and provide
feedback about various design elements using UML. This
greatly facilitates communication of how requirements are
implemented in design and provides valuable feedback to
the developers.

Rational Rose provides the capability to generate C++ code
which is planned for TES science software. We are hopeful
that we will be able to use Rose and CCC/Harvest together
in order to implement round-trip engineering. With round-
trip engineering, a delivered version of software code could
be checked out from Harvest, loaded into Rose and then
appropriate design modifications would only occur within
the visual model. New C++ code would then be generated,
tested, checked into Harvest as a newer version and then
ultimately delivered to the target run-time environment.

Using Rational SoDA to Generate Documentation

Rational SoDA is a document tool provided by Rational
Software, Inc. Like most large software development efforts,
communicating project information can be time consuming
and difficult. Project lifecycle documentation and reports
such as requirements, interfaces and test plans are often
produced haphazardly, or are neglected altogether because
of the effort and time involved in creating and maintaining
them. By using Rational SoDA we are attempting to
overcome many of these issues by automating the creation
and maintenance of comprehensive project documentation
and reports with a single tool.

Unlike manual methods, SoDA generates complete
documentation by automatically extracting data from various
project tool databases. Currently on TES we use SoDA to
generate interface documents by extracting attributes of
selected classes within the Rose design model. In addition,
we are using SoDA to generate a few requirement reports
such as the entire list of all requirements and related traces
extracted from the RequisitePro requirements database. In
the future, we are planning to use SoDA to generate an
external interface document describing our final data
products. This document will be made available to the
scientific community along with the data products. We are
also planning on using Soda to generate test plans by
extracting testable requirements from the RequisitePro
database. In this way, test plans will be generated according
to the most up-to-date requirements. Rational SoDa like
Rational RequisitePro is built around Microsoft Word and
is therefore fairly easy to use and generates documents that
are in a format that can be read and edited by anyone using
Word.

Using Rational Purify

Rational Purify is yet another tool provided by Rational
Software Inc. Purify is a tool that helps locate run-time or
memory-access errors. We use it on TES to automatically
pinpoint hard-to-find run-time errors in our code and
components. The report generated from Purify provides an
important record in unit testing, integration testing and any
regression testing that is performed. Purify although
extremely useful on our team is really more of a vertical tool
and is only mentioned here to describe the complete suite of
Rational products used on the TES project.

7. CONNECTION - HUMAN PROCESSES AND TOOLS

On TES with an integrated approach, we attempt to bring
together the need to have a well-defined process for
managing change that deals with human processes and
processes that can be furthered by use of software tools. The
first involves establishing ways to have a closer working
relationship with the science team. Daily interactions, peer
reviews and a change control board have been discussed.
The second establishes the implementation of several CASE
tools to track and manage change as software is defined,
designed and delivered. We have now discussed the various
techniques and tools as ways to accomplish these two
activities.

Integration By Involvement

Some of the integration of these two activities occurs by
involving the science team members into the usage of the
CASE tools. For example, by using Rational RequisitePro,
scientists can view any requirement and also have direct
input regarding specific requirements language and related
attributes. Also, by exposure to Rational Rose, science team
members have become very familiar with UML as the
modeling language used to express the TES design.

Integration by Process

Integration of these two activities also occurs according to a
workflow process. The process is not complicated. It is
simply a planned path of both human processes and CASE
tool usage and how the two are linked together through the
entire software development lifecycle. This plan is currently
being developed as part of the ongoing system engineering
effort and is expected to be completed sometime in February
of 2001.

8. CONCLUSION

We have addressed the problem that the TES software
development team faces in how to capture and implement
requirements of a large and complex science software
system. We have shown that the software team has selected
an integrated approach that combines both human processes
for establishing, managing and implementing requirements
along with specific horizontal CASE tools for managing
requirements, centralizing a design, generating
documentation and controlling changes. With this approach,
scientist and software developers are working together to
address issues and manage change. With this approach we
are confident that the software team can work more easily
and effectively with the science team.

It is hopeful that this integrated approach of tools and
techniques will continue to provide a process and

mechanism to assist in continually verifying that mission
objectives are correctly expressed in software requirements
and fully realized in design in order to achieve overall
mission success.

ACKNOWLEDGEMENTS

The author would like to acknowledge Melinda C. Morrison,
MBA for her valuable assistance in reviewing early drafts of
this work. The work described herein was funded by the
National Aeronautics and Space Administration (NASA)
and performed at the Jet Propulsion Laboratory under the
management of the California Institute of Technology.

REFERENCES

[1] Reinhard Beer, TES Ground System Operations Concept,
D-18451, Caltech/JPL, CA, 2000.

[2] Richard H. Thayer and Merlin Dorfman, Eds. Software
Requirements Engineering, 2™ Ed., Los Alamitos, CA: IEEE
Computer Society Press, 1997.

[3] Humphrey, W.S., Managing the Software Process,
Reading Mass, Addison Wesley, 1989,

[4] Steve Larson and Brian Morrison, Managing Software
Requirements In the Context of the Scientific Enterprise,
Pasadena, CA: IEEE Aerospace Conference, 2000.

Brian Morrison is a software system engineer at the Jet
Propulsion Laboratory. He has been involved in the
development of avionic software systems at Lockheed
Aeronautical System and has worked on the command and
control software for several NASA deep space tracking
stations. Currently, he is involved in the development of a
science data processing system as part of NASA’s earth
remote sensing program. Mr. Morrison has a B.S. in
Computer Science from California State Polytechnic
University and an MBA specializing in project development
from the University of La Verne.

